Publications
Highlights
2024
81. Gao, S., Hou, P., Wang, D.*, Greenberg, M.* (2024) T7 RNA Polymerase Catalyzed Transcription of the Epimerizable DNA Lesion, Fapy•dG and 8-Oxo-2'-deoxyguanosine. J. Biol. Chem. DOI: https://doi.org/10.1016/j.jbc.2024.107719.
80. Selvam, K., Xu, J., Wilson, H.E., Oh, J., Li, Q., Wang, D.*, Wyrick, J.J.* (2024) Elf1 promotes transcription-coupled repair in yeast by using its C-terminal domain to bind TFIIH. Nat. Commun. 15:6223. DOI: https://doi.org/10.1038/s41467-024-50539-y
79. Zhang, X., Xu, J., Hao, Y., Wang, D.*, Fu, X.-D.* (2024) Cockayne Syndrome Linked to Elevated R-Loops Induced by Stalled RNA Polymerase II during Transcription Elongation. Nat. Commun. Jul 17;15(1):6031.
DOI: https://doi.org/10.1038/s41467-024-50298-w
78. Chen, J., Li, Q., Xia, S., Arsala, D., Sosa, D., Wang, D.*, Long, M.* (2024) The Rapid Evolution of De Novo Proteins in Structure and Complex. Genome Biol. Evol. evae107
DOI: https://doi.org/10.1093/gbe/evae107
77. Hardy, J. C., Pool, E. H., Bruysten, J.G.H., Zhou, X., Li, Q., Zhou, D.R., Palay, M., Tan, G., Chen, L., Choi, J.L.C., Lee, H.N., Strack, S., Wang, D., Taylor, S.S., Mehta, S., Zhang, J.* (2024) Molecular Determinants and Signaling Effects of PKA RIα Phase Separation. Mol. Cell 84 (online)
DOI: https://doi.org/10.1016/j.molcel.2024.03.002
76. Gao, S., Hou, P., Oh, J., Wang, D.*, Greenberg, M.* (2024) Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy•dG. J. Am. Chem. Soc. 146, 9, 6274-6282.
Highlighted in X-mol: UCSD王栋课题组JACS:揭示DNA损伤Fapy•dG引起RNA聚合酶II转录突变的分子机制
Highlighted in Weixin: 【生化】UCSD王栋课题组JACS:揭示DNA损伤Fapy•dG引起RNA聚合酶II转录突变的分子机制
75. Aiyer, S., Baldwin, P. R., Tan, S. M., Shan, Z., Oh, J., Mehrani, A., Bowman, M. E., Louie, G., Passos, D. O., Đorđević-Marquardt, S., Mietzsch, M., Hull, J. A., Hoshika, S., Barad, B. A., Grotjahn, D. A., McKenna, R., Agbandje-McKenna, M., Benner, S. A., Noel, J. A. P., Wang, D., Tan, Y. Z., Lyumkis, D. (2024) Overcoming resolution attenuation during tilted cryo-EM data collection. Nat. Commun. 15, 389.
DOI: https://doi.org/10.1038/s41467-023-44555-7
74. Saram, R. D., Xu, J., Lahiri, I., Gong, W., Li, Q., Oh, J., Zhou, Z., Hou, P., Chong, J., Hao, N., Li, S.*, Wang, D.*, Leschziner, A. E*. (2024) Elf1 promotes Rad26's interaction with lesion-arrested Pol II for transcription-coupled repair. Proc . Natl. Acad. Sci. USA. 121 (3), e2314245121.
2023
73. Oh, J., Shan, Z., Hoshika, S., Xu, J., Chong, J., Benner, S. A.*, Lyumkis, D.*, Wang, D.* (2023) A Unified Watson-Crick Geometry Drives Transcription of Six-Letter Expanded DNA Alphabets by E. coli RNA Polymerase. Nat. Commun. 14:8219.
One of the most read Nature Communications articles in life and biological sciences in 2023 (out of more than 8,500 articles published in Nat. Commun. in the last year): The Top 25 Life and Biological Sciences Articles of 2023
Reported by The Nikkei (one of the four national newspapers in Japan, the world's largest financial newspaper): 人工DNAで新たんぱく質、6文字の塩基で 米研究チーム
Highlighted in UCSD Today 2023: Enzymes Can’t Tell Artificial DNA From the Real Thing (ucsd.edu)
Highlighted in Lab Manager: Enzymes Can’t Tell Artificial DNA from the Real Thing
Highlighted in Newswise: Enzymes Can’t Tell Artificial DNA From the Real Thing
Highlighted in EurekAlert!: Enzymes can’t tell artificial DNA from the real thing
Highlighted in Astrobiology Web: Enzymes Can’t Tell Artificial DNA From The Real Thing
Highlighted in Science Daily: Enzymes can't tell artificial DNA from the real thing
Highlighted in Interesting Engineering: Breakthrough: Artificial DNA opens door to designer proteins
Highlighted in City Life: Scientists Working Towards Expanding Genetic Code with Synthetic
Highlighted in City Life: Scientists Expand the Alphabet of DNA to Unlock New Possibilities
Highlighted in Tech Times: AEGIS Synthetic System: AI-Enhanced DNA Unlocks Precision Protein Design
Highlighted in Mirage News: Enzymes Unable to Differentiate Between Real and Artificial DNA
Highlighted in Technology Networks: RNA Polymerase Can’t Tell Artificial DNA From the Real Thing
Highlighted in Phys.org: Scientists create artificial DNA that can be transcribed by a natural enzyme
Highlighted in AZO Life Sciences: Scientists Crack the Code for Artificial DNA
72. Oh, J., Kimoto, M., Xu, H., Chong, J, Hirao, I*, Wang, D.* (2023) Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase. Nat. Commun. 14:195.
71. Unarta, I. C., Goonetilleke, E. C., Wang, D., Huang, X. H. (2023) Nucleotide Addition and Cleavage by RNA Polymerase II: Coordination of Two Catalytic Reactions using a Single Active Site. J. Biol. Chem. DOI: https://doi.org/10.1016/j.jbc.2022.102844
2022
70. Yan, W., Cao, M., Ruan, X., Jiang, L., Lee, S., Lemanek, A., Ghassemian, M., Pizzo, D.P., Wan, Y., Qiao, Y., Chin, A.R., Duggan, E., Wang, D., Nolan, J.P., Esko, J.D., Schenk, S.* & Wang, S.E.* (2022) Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nat. Cell Biol. 24, 793-804.
69. Fei, J., Xu, J., Li, Z., Xu, K., Wang, D., Kassavetis, G.A. & Kadonaga, J.T. (2022) NDF is a transcription factor that stimulates elongation by RNA polymerase II. Genes Dev. 36, 294-299.
68. Oh, J., Jia, T., Xu, J., Chong, J., Dervan, P.B.* & Wang, D.* (2022) RNA polymerase II trapped on a molecular treadmill: structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proc. Natl. Acad. Sci. USA. 119 (3), e2114065119.
2021
67. Yan, C., Dodd, T., Yu, J., Leung, B., Xu, J., Oh, J., Wang, D.* & Ivanov, I. * (2021) Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat. Commun. 12:7001.
66. Xu, J., Oh, J., Chong, J., Xu, L., & Wang, D.* (2021) Molecular Basis for Transcriptional Fidelity Control by RNA polymerase II. In R. Landick, J.D. Wang, & T. Strick (Eds) RNA Polymerases as Molecular Motors. 2nd Ed. Royal Society of Chemistry Press.
64. Oh, J., Shin, J., Unarta, I.C., Wang, W., Feldman, A.W., Karadeema, R.J., Xu, L., Xu, J., Chong, J., Krishnamurthy, R., Huang, X., Romesberg, F.E. & Wang, D.* (2021) Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat. Chem. Biol. doi: 10.1038/s41589-021-00817-3.
Highlighted in UCSD Health News (2021): https://health.ucsd.edu/news/releases/Pages/2021-06-17-how-cells-read-artificial-ingredients-tossed-into-genetic-recipe.aspx
Highlighted in AAAS EurekaAlert (2021): https://www.eurekalert.org/pub_releases/2021-06/uoc--hc061721.php
61. Yuan, S., Yin, X., Meng, X., Chan, J.F.-W., Ye, Z.-W., Riva, L., Pache, L., Chan, C.C.-Y., Lai, P.M., Chan, C..C.-S., Poon, V.K.-M., Lee, A.C.-Y., Matsunaga, N., Pu, Y., Yuen, C.-K., Cao, J., Liang, R., Tang, K., Sheng, L., Du, Y., Xu, W., Lau, C.-Y., Sit, K.-Y., Au, W.-K., Wang, R., Zhang, Y.-Y., Tang, Y.-D., Clausen, T.M., Pihl, J., Oh, J., Sze, K.-H., Zhang, A.J., Chu, H., Kok, K.-H., Wang, D., Cai, X.-H., Esko, J.D., Hung, I.F.-N., Li, R.A., Chen, H., Sun, H., Jin, D.-Y., Sun, R.*, Chanda, S.K.* & Yuen, K.Y.* (2021) Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. doi: 10.1038/s41586-021-03431-4.
Highlighted in Science Daily (2021): https://www.sciencedaily.com/releases/2021/03/210316083747.htm
Highlighted in Genetic Engineering & Biotechnology News (2021): https://www.genengnews.com/news/decades-old-leprosy-drug-inhibits-coronaviruses-may-treat-covid-19/
2020
57. Wang, D.* (2020) Using Genetics to Reveal Protein Structure. Science. 370(6522): 1269-1270.
2019
48. Oh, J., Xu, J., Chong, J. & Wang, D.* (2019) Structural and Biochemical Analysis of DNA Lesion-Induced RNA Polymerase II Arrest. Methods. doi: 10.1016/j.ymeth.2019.02.019. (Invited Review)
2018
47. Wang, W., Xu, J., Chong, J. & Wang, D.* (2018) Structural Basis of DNA Lesion Recognition for Eukaryotic Transcription-Coupled Nucleotide Excision Repair. DNA Repair. 71(2018):43-55. (Invited Review)
46. Sanz-Murillo, M., Xu, J., Belogurov, G.A., Calvo, O., Gil-Carton, D., Moreno-Morcillo, M., Wang, D. & Fernández-Tornero, C. (2018) Structural Basis of RNA Polymerase I Stalling At UV Light-Induced DNA Damage. Proc. Natl. Acad. Sci. USA. 115(36):8972-8977.
Covered in UCSD Health News: Study Reveals How Enzyme Detects Ultraviolet Light Damage
Covered in Village News: UCSD researchers record activity of DNA-repairing enzyme in new study
Covered in Phys.org: Study reveals how enzyme detects ultraviolet light damage
2017
43. Xu, J., Lahiri, I., Wang, W., Wier, A., Cianfrocco, M.A., Chong, J., Hare, A.A., Dervan, P.B., DiMaio, F., Leschziner, A.E.* & Wang, D.* (2017) Structural Basis for the Initiation of Eukaryotic Transcription-Coupled DNA Repair. Nature. 551:653-657.
Featured in UCSD Health Sciences Blog:Frozen in Action: How Cells Repair DNA, as it's Being Transcribed
39. Shin, J.H., Xu, L. & Wang, D.* (2017) Mechanism of Transcription-Coupled DNA Modification Recognition. Cell Biosci. 7:9. (Invited Review)
2016
35. Shin, J.H., Xu, L. & Wang, D.* (2016) RNA Polymerase II Acts as a Selective Sensor for DNA Lesions and Endogenous DNA Modifications. Transcription. 7(3):57-62. (Invited Review)
2015
2014
2013
17. Zhang, S. & Wang, D.* (2013) Understanding the Molecular Basis of RNA Polymerase II Transcription. Isr. J. Chem. 53(6-7). (Invited Review)
2012
15. Kellinger, M.W., Song, C., Chong, J., Lu, X., He, C. & Wang, D.* (2012) 5-Formylcytosine and 5-Carboxylcytosine Reduce the Rate and Substrate Specificity of RNA Polymerase II Transcription. Nat. Struct. Mol. Biol. 19(8):831-3.
Commented in: Huang Y., Rao A. (2012) New functions for DNA modifications by TET-JBP. Nat. Struct. Mol. Biol. 19(11):1061-4.
Highlighted in UCSD Health Sciences Blog: Parsing a process of life
14. Kellinger, M.W., Ultrich, S., Chong, J., Kool, E.T.* & Wang, D.* (2012) Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity. J. Am. Chem. Soc. 134(19): 8231-40.
Reported in reviews: Svetlov, V. & Nudler, E. (2013) Basic mechanism of transcription by RNA polymerase II. Biochim. Biophys. Acta. 1829(1):20–28.Kaplan, C.D. (2013) Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1829(1):39-54.
13. Da, L-T., Wang, D.* & Huang, X.* (2012) Dynamics of Pyrophosphate Ion Release and Its Coupled Trigger Loop Motion from Closed to Open State in RNA Polymerase II. J. Am. Chem. Soc. 134(4): 2399-406.
Reported in reviews: Svetlov, V. & Nudler, E. (2013) Basic mechanism of transcription by RNA polymerase II. Biochim. Biophys. Acta.1829(1):20–28. Kaplan, C.D. (2013) Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1829(1):39-54.
2010
12. Huang, X., Wang, D., Weiss, D.R., Bushnell, D.A., Kornberg, R.D. & Levitt, M. (2010) RNA Polymerase II Trigger Loop Residues Stabilize and Position the Incoming Nucleotide Triphosphate in Transcription. Proc. Natl. Acad. Sci. U.S.A. 107(36):15745-50.
Reported in: Faculty of 1000 Biology as recommended F1000 Factor 6.0
11. Wang, D.*, Zhu, G., Huang, X. & Lippard, S.J.* (2010) X-ray Structure and Mechanism of RNA Polymerase II Stalled at an Antineoplastic Monofunctional Platinum-DNA Adduct. Proc. Natl. Acad. Sci. U.S.A. 107(21): 9584-9589.
Reported in: Faculty of 1000 Biology as recommended F1000 Factor 8.0
Postdoc at Stanford
9. Wang, D., Bushnell, D.A., Westover, K.D., Huang, X., Levitt, M. & Kornberg, R.D. (2009) Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Å Resolution. Science. 324(5931): 1203-6.
Reported in: Faculty of 1000 Biology as Must Read F1000 Factor 10.0 ALSNews and SLAC today
8. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D. & Kornberg, R.D. (2006) Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis. Cell. 127(5): 941-54. (Cover)
Reported in: SSRL Science Highlight & Light Source Science Highlight
7. Takagi, Y., Masuda, C.A., Chang, W.H., Komori, H., Wang, D., Hunter, T., Joazeiro, C.A. & Kornberg, R.D. (2005) Ubiquitin Ligase Activity of TFIIH and the Transcriptional Response to DNA Damage. Mol. Cell. 18(2): 237-243.
Reported in: Faculty of 1000 Biology as Must Read F1000 Factor 8.0
Ph.D. at MIT
5. Wang, D. & Lippard, S.J. (2005) Cellular Processing of Platinum Anticancer Drugs. Nat. Rev. Drug Discov. 4(4): 307-20. (Invited Review)
4. Wang, D. & Lippard, S.J. (2004) Cisplatin-induced Post-Translational Modification of Histones H3 and H4. J. Biol. Chem. 279(20): 20622-5.
3. Wang, D., Hara, R., Singh, G., Sancar, A. & Lippard, S.J. (2003) Nucleotide Excision Repair from Site-Specifically Platinum-Modified Nucleosomes. Biochemistry. 42(22): 6747-53.